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Abstract. Some numerical experiments were performed to compare the per- 
formance of procedures for solving the linear least-squares problem based on Gram- 
Schmidt, Modified Gram-Schmidt, and Householder transformations as well as 
the classical method of forming and solving the normal equations. In addition, 
similar comparisons were made of the first three procedures and a procedure based 
on Gaussian elimination for solving an n X n system of equations. The results of 
these experiments suggest that: (1) the Modified Gram-Schmidt procedure is best 
for the least-squares problem and that the procedure based on Householder transfor- 
mations performed competitively; (2) all the methods for solving least-squares 
problems suffer the effects of the condition number of A TA, although in a different 
manner for the first three procedures than for the fourth; and (3) the procedure 
based on Gaussian elimination is the most economical and essentially, the most 
accurate for solving n X n systems of linear equations. Some effects of pivoting in 
each of the procedures are included. 

1. Introduction. As part of a periodic review of basic subroutines issued for 
general use at the Los Alamos Scientific Laboratory, three common methods and a 
variant of one of these methods were compared for solving linear least-squares 
problems. Because of the well-known numerical difficulties encountered with least- 
squares problems, the primary test problem used a matrix made up of columns from 
the inverse of a Hilbert segment. This difficult test problem was selected anticipating 
that differences in methods and implementation would be magnified. The results 
verify that this is the case. 

The calculations were performed on the Stretch (IBM-7030) computer, a 64-bit 
binary machine with a 48-bit floating point mantissa. All the calculations were done 
in single precision with the exception of certain inner products (computed with 
double-precision accumulation and rounded to single-precision). The test data had 
to be representable exactly in the machine and the results had to be known, because 
the effects due to error in the input data can completely overshadow the effect of 
rounding errors [1]. 

The problem is that of finding the least-squares solution to Ax = b. The example 
discussed at greatest length is that in which A is taken as the first five columns of the 
inverse of the 6 X 6 segment of the Hilbert matrix. The right-hand column, b, is 
taken so that the solution is 1, 1/2, 1/3, 1/4, 1/5. In this example the matrices A and 
b have exact representations in the Stretch computer, thereby ensuring that all 
error is generated in performing the least-squares procedures. Reinforcement of the 
solution by iterating on the error vector is not pertinent to this presentation [2]. 
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2. Methods. 
I. Solution of Normal Equations (NE). For completeness, the more classical 

approach to solving least-squares problems, that of forming the normal equations 
and solving the resultant linear system by Gaussian elimination, has been included 
in the experiments. Thus, one forms A TAx = A Tb, where A TA = [(A i, A j)], A Tb 

= [(A i, b)], A i is the ith column vector of A, and (x, y) is the inner product of vectors 
x and y. The matrices A TA and A Tb are computed with double-precision accumula- 
tion and rounded to single-precision. The normal equations are then solved by LSS, 
a Los Alamos subroutine for solving systems of linear equations. The pertinent 
characteristics of the LSS subroutine are: 

(A) At each stage of the reduction to upper triangular form, the subroutine 
performs maximal pivoting only within a column (partial pivoting). This is a limita- 
tion imposed by doing the extra precision described in the following paragraph. 

(B) Extra precision is achieved in the reduction to upper triangular form by 
saving the necessary coefficients for each reduction and then calculating and storing 
the reduced elements only once. The new elements are linear combinations of pre- 
ceding reduced elements and are accumulated in double precision. More precisely, 
the procedure for the triangular reduction, ignoring pivot determination, is: 

For k = 2, 3, **,n 
For i =2, 3, m 

Sk=0 ?if i < k 
= a,k-l/aklkl if i ? k 

k-1 

dk= ai,k - E sijdk 
j=i 

where aj = aij for j = 1, 2, * * n, a.'i = aij for i = 1, 2, * *, m, and m and n 
are the numbers of rows and columns of A, respectively. 

(C) Extra precision is achieved in the back substitution by doing similar linear 
combinations in double precision. 

II. Householder Orthogonal Transformations (HH). The method described in [3] 
was programmed without automatic pivoting; however, various column arrange- 
ments of A were tried including least- and most-optimal pivoting using the strategy 
defined in [3]. In fact, although little difference appears due to pivoting, the least- 
optimal pivoting produced the better results on the primary test problem. 

The method may be summarized by the following procedure: 

Fork=1,22, ... n 
m 1/2 

(kE(k) k ) 2 

(k) _ 1/[o(k) (k) + la k^)] 

For i =1, 2, In, 

ui(k)=O i<k 
= sgn (a(k) [ka + la k)k|] i = k 

=a i, k i > kf 

A (k+) = A(t) _ U(k)((k)ui(k)TA(k)) 

b(k) = b(k) _ I(t)(f(k)u(k)Tb(k)) 
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where m is the number of rows and n is the number of columns. 
When applied to A and b, this orthogonal transformation produces an n X n 

upper triangular system Rx = c, whose solution is the least-squares solution to 
Ax = b. The upper triangular system Rx = c is solved by back substitution. 

Concerning implementation, it should be pointed out where double-precision 
inner products are computed. These places are 

(1) in the calculation of 0(k), 

(2) in the calculation of U(k)TA (k) and U(k)Tb(k), and 
(3) in the back substitution in the same fashion as done in the linear system 

subroutine LSS. 
The pivoting strategy described in [3] chooses at the kth stage the column of A (k) 

which will maximize IA (k+l) I. This is equivalent to an interchange of columns k to 
m, such that Z7=k (a~k))2 is maximized. The invariance of column lengths under 
orthogonal transformations makes this a simple calculation once the original column 
lengths are computed. 

III. Column Orthogonalization. This method transforms the column vectors of 
A into an orthogonal set and then orthogonalizes b with respect to this new set of 
orthogonal vectors [4]. A geometrical interpretation of the classical description of 
the Gram-Schmidt orthogonalization procedure is the following: at the rth stage 
make the rth column vector orthogonal to each of the r - 1 previously orthogonal- 
ized columns vectors, and do this for column vectors indexed r = 2, 3, ... , n. A 
variant procedure for obtaining the same set of vectors has the following geometri- 
cal interpretation. At the rth stage, make the (n - r + 1) column vectors indexed r, 
r + 1, * , n orthogonal to the (r- 1)th column vector, and do this for column indi- 
ces r = 2, 3, * * *, n. Since there are large numerical differences in the experimental 
results, depending upon which interpretation is implemented, the procedures shall 
be referred to as Gram-Schmidt and Modified Gram-Schmidt, respectively. 

A recent paper by Bj6rck [5] includes an error analysis of the Modified Gram- 
Schmidt orthogonalizatioi-rorcednr-e Thft iertinent mimealrkeauisns_ of those that 
follow support nicely the conclusions of Bj6rck. 

Gram-Schmidt Orthogonalization (GS). The code written to demonstrate the 
classical Gram-Schmidt approach assumes as input an augmented matrix 

(1) Q A -b 

where Q is (m + n) X (n + 1). Let Qi(l) and AiM designate the columns of Q and 
A, respectively. The transformation performed on Q is given by the procedure: 

Q11 = Q101) 
Forj =2, 3, * , n +1 

Ij_, (A' -1, A jl 
Fori= 1,2, ... j-1 

(2) Q =(i+l) Q (i) (As', Aj ) 

Qj' Qj~j 

Double-precision accumulation was implemented for each indicated inner product. 
By reserving storage for ci = (A !, A j ())/li2, i = 1, 2, *, j - 1, each component 
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of Qj' can be computed with double-precision accumulation. Thus, we have an 
additional inner-product calculation that was done in extra precision. This extra- 
precision work does not appear convenient in the Modified Gram-Schmidt method. 
It was originally assumed that this extra precision would make this method more 
accurate than Modified Gram-Schmidt. The results of the experiments indicate this 
is not the case. The resultant Q' matrix, obtained by applying the above transforma- 
tion, is 

uI * 
Q = | ;r| t 

where A' is a matrix of orthogonal columns, e is the residual error b - Ax, U is an 
upper triangular matrix such that A' = A U, and x is the least-square solution. 

Modified Gram-Schmidt Orthogonalization (MGS). Let Q be the matrix defined 
by Eq. (1). Again, let Qi(l) and A (1) designate the columns of Q and A, respectively. 
Then we transform Q by the following procedure: 

Q1' = Q1(1) 
Forj =2,3, * ,n+ 1 

1 = (A..1, A~ 1) 
Fori = 1,2, .. ,j - 1 

Q.(+l) =Qji (Asi' ,Aj 

Q/= Qj) 

Pivoting in the Gram-Schmidt or Modified Gram-Schmidt procedure consists 
of a column interchange at the kth stage such that the length of Ak(k) relative to the 
original length of Ak(1) is largest among the candidates Ak(k), Ak?)1, ... ,An(A) 

It should be emphasized that the two methods produce approximations to the 
same orthogonal set of vectors, that the amount of arithmetic required is the same, 
and that the procedures differ in only one detail. The results of these experiments 
leaves no doubt as to the preferable method for the least-squares problem. The 
superiority of the Modified Gram-Schmidt over Gram-Schmidt has been established 
by Rice [6] for the orthogonalization problem. 

The above presentation of Gram-Schmidt and Modified Gram-Schmidt pro- 
cedures gives some insight as to why the Modified Gram-Schmidt is superior. The 
only difference in the two procedures appears in the factors (Ai', Aj 1)) = c and 
(A/', A/(i)) - c in Eqs. (2) and (3), respectively. Since the A/i) are successive 
images of A j(l) obtained by subtracting the components of A j(1) parallel to each A i', 
i = 1, 2, * , j - 1, from A/'1), then JAAj ()jj < IJA/1)jj. The error in c due to the 
error in AX is magnified by IIA j )II and IIAj(1)I1 in the two approximations to c. 

3. Pivoting. Optimum pivoting is defined as that permissible arrangement of 
rows and columns which produces the most accurate results when the algorithms 
are applied without further row or column interchange. Such an arrangement is 
rarely known in advance, and consequently some strategy to approximate this is 
required as the calculation proceeds. For singular problems (rank r < n) some 
strategy is a necessity in order to refrain using an approximate zero column as a 
pivot column. For nonsingular problems there are also known strategies to avoid 
as a general procedure. However, when some of the effects of the above pivoting 
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strategies are analyzed, it will be observed that this is indeed a very complicated 
problem. 

Let 6H6X5 denote the first five columns of the inverse of the 6 X 6 Hilbert 
segment. Define the column arrangement (1, 2, 3, 4, 5), abbreviated (1, 5) in the 
graphs,* as the natural order. For each of the methods, (5, 4, 3, 2, 1), abbreviated 
(5, 1) in the graphs,** represents a "best"arrangement of columns for each strategy, 
whereas (1, 2, 3, 4, 5) represents a "poorest" arrangement of columns for each 
strategy. 

A summary of results reveals the following conclusions for this example and 
each method. 

(A) Householder-results were mixed and close, therefore no conclusions should 
be drawn. The method does not appear sensitive to pivoting. 

A = 6H1 , X = (, 1/2,i/3,1/4,1/5) 6X5 

b= Ax c , r= 

0 10 20 30 40 50 60 70 80 90 100 
--I +-r- -i- + l I i i FIGURE 

LOSS 

GS (1,5) 117 

NE (1,5) 10.0 

GS (5,1) 9.0 

HH (5,1) 5.3 

HH (1,5) 5.0 

MGS (5,) 4.9 

MGS (1,5) 4.8 

FIGURE la. Least squares: Inverse of the Hilbert segment-O residual. 

A = 6H- , X (I, 1/2,1/3,1/4,1/5) 

b = Ax + r1 , r = r , IlrIIl .02jjcII 

0 10 20 30 40. 50 60 70 80 90 100 
i i | | i * @ FIGURE 

LOSS 

G S (1, 5) 1 1.7 

NE (1,5) 10.0 

HH (1,5) 8.0 

MGS (1,5) 7.0 

FIGURE lb. Least squares: Inverse of the Hilbert segment-2% residual. 

* See Fig. la through le and 3. 
** See Fig. la and 3. 
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A = 6H15 * X 5 (1,1/2,1/3,1/4,1/5) 

b = Ax+r2, r2 - 3r, , Ijr2IIj.O6jjcII 

9 
0 10 20 30 40 50 60 70 80 90 100 

FIGURE 
LOSS 

GS (1,5) 11.7 

NE (1,5) 10.0 

HH (1,5) 8.4 

MGS (1,5) 7.5 

FIGURE 1c. Least squares: Inverse of the Hilbert segment-6%o residual. 

A = 6H1 , X = (1,1/2,1/3,1/4,1/5) 
6X5 

b Ax + r3, r, = 12r, I1r311-.2411cII 

0 10 20 30 40 50 60 70 80 90 100 
FIGURE 
LOSS 

GS (1,5) 11.7 

NE (1,5) 10.0 

HH (1,5) 9.0 

MGS (1,5) 8,1 

FIGURE ld. Least squares: Inverse of the Hilbert segment-24% residual. 

A 6H' , X = (I,1/2,1/3,1/4,1/5) 6K5 

b = Ax , r4 , = 120r, IIr411-2.41IcII 

9 
0 10 20 30 40 50 60 70 80 90 100 

i+--i-----ti -t- -- -i iFIGURE 
LOSS 

GS (1,5) 11.7 

NE (1,5) 10.0 

HH (1,5) 10.0 

MGS (1,5) 9.1 

FIGURE le. Least squares: Inverse of the Hilbert segment-240% residual. 

(B) Modified Gram-Schmidt-the results slightly favor poorest pivoting, but 
results were so close no conclusions should be drawn. This method does not appear 
sensitive to pivoting. 
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(C) Gram-Schmidt-the number of good digits was nearly doubled. This 
strategy makes Gram-Schmidt compete with the normal equations. 

(D) Gaussian elimination-the cases tested here were (1) Partial Pivoting (PP) 
with column arrangements (a) (1, 2, 3, 4, 5) and (b) (5, 4, 3, 2, 1), the latter pro- 
viding maximal pivots at each stage; (2) complete pivoting, i.e., pivoting with a 
maximum element (M.P.); and (3) pivoting with a minimum element (m.p.). Since 
it is known that no zero elements occur in this example, pivoting with a minimal 
element is possible. If we order the results according to maximal accuracy, we 
obtain l.(b), 3, 2, l.(a), corresponding to maximum errors 1.5, 2.2, 4.5, and 6.2- 
each X 10-11. (This study is included in Fig. 3.) 

A = (a) = - 1) 2-7] i 

I S i < I129 , I S i < 7 

X S (1,1X1,1,1,1,1) 

b Ax, r O 

0 10 20 30 40 50 60 70 80 90 100 
FIGURE 
LOSS 

GS 8.8 

NE 8.0 

HH 3.9 

MGS 3.0 

FIGURE 2a. Least squares: Polynomial-degree 6-129 points on [0, 11. 

A (a j) = [(i - 1) 2-1o]0-t 

I < i < 1025 , I < j < 5 

X =(1X1,1,1,1) 

b =Ax, r=0 

9 
0 10 20 30 40 50 60 70 80 90 100 

i FIGURE 
LOSS 

NE 4.8 

GS 3.8 

HH 1.0 

MGS - 0.7 

FIGURE 2b. Least squares: Polynomial-degree 4-1025 points on [0, 1]. 

If one draws any conclusions about pivoting in this study, it is that the Hilbert 
segment is not very sensitive to pivoting. This investigation of pivoting revealed 
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that a generally unworkable strategy produces almost the best results. This serves 
to emphasize the complexity of optimum pivoting. 

A = 
5H,5 X = (I,1/2,1/3,1/4,1/5) 

0 10 20 30 40 50 60 70 80 90 100 
t-- --i-----i-----h --i-as --t----iI-H I-IFIGURE 

LOSS 

GS (1,5) L 11.7 

GS (5,1) 10.0 

HH (1,5) 5.7 

MGS (5, 1) 4.4 

H H (5,1) 4.4 

PP (1,5) - 4. 2 

MP 4.1 

mp 3.8 

PP (5.1) 3.6 

MGS(0,5) 3. 1 

FIGURE 3. Linear system: Inverse of the Hilbert segment. 

4. Scope of Numerical Study. Results shown here come from three examples. 
In each case A and b have exact representations in the computer and the solution 
is known. The examples are 

(A) The least-squares problem for six rows and five columns of the inverse of 
the 6 X 6 Hilbert segment denoted by 6H6X5. The solution vector was taken as 
(1, 1/2, 1/3, 1/4, 1/5) with various error components. The comparative performances 
of the four procedures described above are shown for increasing residuals in Fig. la 
through le. 

(B) The least-squares problem for a polynomial of degree n - 1 with 2m + 1 
equidistant data points (i.e. Ax = 2-m) on [0, 1]. The values m and n are constrained 
such that Xir, 0 ? r ? n - 1 and 0 < i < m, is exactly representable in the com- 
puter. The solution vector has components all Us. Two polynomial cases were 
studied. The comparative performances are shown in Fig. 2a and 2b for (m = 7, 
n = 7) and (m = 10, n = 5), respectively. 

(C) The linear equation problem where A is the first five rows and five columns 
of the inverse of the Hilbert segment. The solution vector is taken as (1, 1/2, 1/3, 
1/4, 1/5). Fig. 3 shows comparative performances of the three methods based on 
orthogonal transformations and Gaussian elimination with various pivot arrange- 
ments. 
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The error measure is taken as the maximum relative error. The results remain 
comparatively the same when other conventional error norms are used. The results 
will show the maximum figure loss associated with each experiment and a percent 
of full accuracy g given by g = E/14.4, where, if 

ei = log o X X X/ XiC Xi T xc i 
- 14.4 if X T =XiC 

X.T is the true value of the ith component of the solution vector and Xic is the corre- 
sponding computed value, E = max i E. The 14.4 comes from the decimal equivalent 
of the Stretch 48-bit mantissa. The figure loss is the more nearly invariant measure 
for computers with differing word size. 

Finally, it is important to observe the performance of the various methods as a 
function of the length of the error vector. If we write Ax = b = c + r, where c lies 
in the space SA spanned by A and r is the residual vector which is a vector orthogo- 
nal to SA, then we will note differing behaviors as the lengths of r varies and c 
remains fixed. The cases studied include 

ltroll =0, 
trill _ .02 cJiJ, 
11r211 = 3 riJll _ 0.06 cJlJ, 
Jr3J= 12 11rill _ 0.24 cJlJ, 
J1r4JJ = 120 rinl _ 2.4 flcl, 

where c = 6H-15 (1, 1/2, 1/3, 1/4, 1/5)T and ri = (4620, 3960, 3465, 3080, 2772, 
2520)T. The lengths of ri and c are, respectively, 8.517 X 103 and 4.18 X 105. 

5. Conclusions. 1\'Jodified Gram-Schmidt performed better than the other 
methods in all the examples studied. The Householder method performed com- 
petitively. 

The dramatic difference in performance between Gram-Schmidt and Modified 
Gram-Schmidt illustrates the need to worry about the details of implementation 
and associated error analysis. It can be the difference between good and nonsensical 
results. 

The insensitivity of the normal equations to the size of the error vector makes it 
more competitive if m >> n and the normal equations can be formed economically 
with double-precision accumulation and solved completely with double-precision 
arithmetic. 

For the linear-equation problem, Gaussian elimination with partial pivoting 
and double-precision accumulation generally is the best. Modified Gram-Schmidt 
and Householder compete, but are also more expensive in numerical operations. 

This example also illustrates that single-precision iterative techniques would 
not do any better for the case where the solution is compatible. The error vector 
had a relative error of 10-' when compared to the b vector. It is, of course, well 
known that the residual vector should be computed with double-precision accumu- 
lation. 

It is well known that the figure loss associated with problems involving A TA is 
essentially double that of A since the condition number of ATA is the square of 
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that of A. It is not so well known that the square of the condition number enters 
into those methods based on orthogonal transformations-presumably as a factor 
of the length of the residual vector r. 
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